banner



X Vit 1 2at 2

Tick mark Image

Tick mark Image

Similar Problems from Spider web Search

Share

\frac{1}{2}at^{two}=x

Swap sides so that all variable terms are on the left hand side.

\frac{t^{2}}{2}a=x

The equation is in standard form.

\frac{2\times \left(\frac{t^{2}}{2}\right)a}{t^{2}}=\frac{2x}{t^{two}}

Divide both sides by \frac{1}{2}t^{2}.

a=\frac{2x}{t^{2}}

Dividing by \frac{1}{2}t^{two} undoes the multiplication by \frac{1}{2}t^{2}.

\frac{1}{ii}at^{ii}=10

Swap sides so that all variable terms are on the left hand side.

\frac{2\times \left(\frac{a}{2}\right)t^{2}}{a}=\frac{2x}{a}

Divide both sides by \frac{1}{ii}a.

t^{2}=\frac{2x}{a}

Dividing past \frac{1}{two}a undoes the multiplication past \frac{1}{2}a.

t=\sqrt{\frac{2x}{a}} t=-\sqrt{\frac{2x}{a}}

Take the square root of both sides of the equation.

\frac{1}{2}at^{2}=10

Swap sides and then that all variable terms are on the left hand side.

\frac{ane}{two}at^{2}-10=0

Subtract x from both sides.

\frac{a}{2}t^{2}-ten=0

Quadratic equations like this one, with an x^{2} term but no x term, tin still exist solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, one time they are put in standard class: ax^{2}+bx+c=0.

t=\frac{0±\sqrt{0^{ii}-iv\times \left(\frac{a}{2}\right)\left(-10\correct)}}{two\times \left(\frac{a}{ii}\correct)}

This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{ane}{2}a for a, 0 for b, and -x for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.

t=\frac{0±\sqrt{-iv\times \left(\frac{a}{2}\right)\left(-x\right)}}{ii\times \left(\frac{a}{two}\right)}

Foursquare 0.

t=\frac{0±\sqrt{\left(-2a\right)\left(-x\correct)}}{2\times \left(\frac{a}{2}\correct)}

Multiply -four times \frac{1}{2}a.

t=\frac{0±\sqrt{2ax}}{2\times \left(\frac{a}{2}\right)}

Multiply -2a times -x.

t=\frac{0±\sqrt{2ax}}{a}

Multiply two times \frac{i}{2}a.

t=\frac{\sqrt{2ax}}{a}

At present solve the equation t=\frac{0±\sqrt{2ax}}{a} when ± is plus.

t=-\frac{\sqrt{2ax}}{a}

Now solve the equation t=\frac{0±\sqrt{2ax}}{a} when ± is minus.

t=\frac{\sqrt{2ax}}{a} t=-\frac{\sqrt{2ax}}{a}

The equation is now solved.

X Vit 1 2at 2,

Source: https://mathsolver.microsoft.com/en/solve-problem/x%20%3D%20%60frac%20%7B%201%20%7D%20%7B%202%20%7D%20a%20t%20%5E%20%7B%202%20%7D

Posted by: kirkseystionve.blogspot.com

0 Response to "X Vit 1 2at 2"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel